Discrete PID Controller Tuning Using Piecewise-Linear Neural Network

نویسندگان

  • Petr Doležel
  • Ivan Taufer
چکیده

PID controller (which is an acronym to “proportional, integral and derivative”) is a type of device used for process control. As first practical use of PID controller dates to 1890s (Bennett, 1993), PID controllers are spread widely in various control applications till these days. In process control today, more than 95% of the control loops are PID type (Astrom et al., 1995). PID controllers have experienced many changes in technology, from mechanics and pneumatics to microprocessors and computers. Especially microprocessors have influenced PID controllers applying significantly. They have given possibilities to provide additional features like automatic tuning or continuous adaptation – and continuous adaptation of PID controller via neural model of controlled system (which is considered to be significantly nonlinear) is the aim of this contribution. Artificial Neural Networks have traditionally enjoyed considerable attention in process control applications, especially for their universal approximation abilities (Montague et al., 1994), (Dwarapudi, et al., 2007). In next sections, there is to be explained how to use artificial neural networks with piecewise-linear activation functions in hidden layer in controller design. To be more specific, there is described technique of controlled plant linearization using nonlinear neural model. Obtained linearized model is in a shape of linear difference equation and it can be used for PID controller parameters tuning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piecewise-linear artificial neural networks for PID controller tuning

A new algorithm of PID controller tuning is presented in this paper. It is well known that there have been introduced many techniques for PID controller tuning, both theoretical and experimental ones. However, this algorithm is suitable especially for highly nonlinear processes. It uses a model of the controlled process in the shape of piecewise-linear neural network which is linearized continu...

متن کامل

Neural Model-Based Self-Tuning PID Strategy Applied to PEMFC

This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous linearization of an artificial neural network model of the process and a General Minimum Variance control law. The self-tuning PID scheme allows managing nonlinear behaviors of the sy...

متن کامل

Neuro-Self Tuning Adaptive Controller for Non-Linear Dynamical Systems

In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual out...

متن کامل

Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks

During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...

متن کامل

Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system

This paper presents the design of a neural network based feedback linearization (NNFBL) controller for a two degree-offreedom (DOF), quarter-car, servo-hydraulic vehicle suspension system. The main objective of the direct adaptive NNFBL controller is to improve the system’s ride comfort and handling quality. A feedforward, multi-layer perceptron (MLP) neural network (NN) model that is well suit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012